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Figure 1: UE4: Infiltrator demo

Introduction
About a year ago, we decided to invest some time in improving our shading model and embrace a more
physically based material workflow. This was driven partly by a desire to render more realistic images,
but we were also interested in what we could achieve through a more physically based approach to
material creation and the use of material layering. The artists felt that this would be an enormous
improvement to workflow and quality, and I had already seen these benefits first hand at another
studio, where we had transitioned to material layers that were composited offline. One of our technical
artists here at Epic experimented with doing the layering in the shader with promising enough results
that this became an additional requirement.

In order to support this direction, we knew that material layering needed to be simple and efficient.
With perfect timing came Disney’s presentation [2] concerning their physically based shading and
material model used for Wreck-It Ralph. Brent Burley demonstrated that a very small set of material
parameters could be sophisticated enough for offline feature film rendering. He also showed that a fairly
practical shading model could closely fit most sampled materials. Their work became an inspiration
and basis for ours, and like their “principles” we decided to define goals for our own system:
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Real-Time Performance

• First and foremost, it needs to be efficient to use with many lights visible at a time.

Reduced Complexity

• There should be as few parameters as possible. A large array of parameters either results in
decision paralysis, trial and error, or interconnected properties that require many values to be
changed for a single intended effect.

• We need to be able to use image-based lighting and analytic light sources interchangeably, so
parameters must behave consistently across all light types.

Intuitive Interface

• We prefer simple-to-understand values, as opposed to physical ones such as index of refraction.

Perceptually Linear

• We wish to support layering through masks, but we can only afford to shade once per pixel. This
means that parameter-blended shading must match blending of the shaded results as closely as
possible.

Easy to Master

• We would like to avoid the need for technical understanding of dielectrics and conductors, as well
as minimize the effort required to create basic physically plausible materials.

Robust

• It should be difficult to mistakenly create physically implausible materials.

• All combinations of parameters should be as robust and plausible as possible.

Expressive

• Deferred shading limits the number of shading models we can have, so our base shading model
needs to be descriptive enough to cover 99% of the materials that occur in the real world.

• All layerable materials need to share the same set of parameters in order to blend between them.

Flexible

• Other projects and licensees may not share the same goal of photorealism, so it needs to be
flexible enough to enable non-photorealistic rendering.

Shading Model
Diffuse BRDF
We evaluated Burley’s diffuse model but saw only minor differences compared to Lambertian diffuse
(Equation 1), so we couldn’t justify the extra cost. In addition, any more sophisticated diffuse model
would be difficult to use efficiently with image-based or spherical harmonic lighting. As a result, we
didn’t invest much effort in evaluating other choices.

f(l,v) = cdiff
π

(1)

Where cdiff is the diffuse albedo of the material.
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Microfacet Specular BRDF
The general Cook-Torrance [5, 6] microfacet specular shading model is:

f(l,v) = D(h)F (v,h)G(l,v,h)
4 (n · l) (n · v) (2)

See [9] in this course for extensive details.
We started with Disney’s model and evaluated the importance of each term compared with more

efficient alternatives. This was more difficult than it sounds; published formulas for each term don’t
necessarily use the same input parameters which is vital for correct comparison.

Specular D
For the normal distribution function (NDF), we found Disney’s choice of GGX/Trowbridge-Reitz to
be well worth the cost. The additional expense over using Blinn-Phong is fairly small, and the distinct,
natural appearance produced by the longer “tail” appealed to our artists. We also adopted Disney’s
reparameterization of α = Roughness2.

D(h) = α2

π ((n · h)2 (α2 − 1) + 1)2
(3)

Specular G
We evaluated more options for the specular geometric attenuation term than any other. In the end,
we chose to use the Schlick model [19], but with k = α/2, so as to better fit the Smith model for
GGX [21]. With this modification, the Schlick model exactly matches Smith for α = 1 and is a fairly
close approximation over the range [0, 1] (shown in Figure 2). We also chose to use Disney’s modification
to reduce “hotness” by remapping roughness using Roughness+1

2 before squaring. It’s important to note
that this adjustment is only used for analytic light sources; if applied to image-based lighting, the
results at glancing angles will be much too dark.

k =
(Roughness+ 1)2

8

G1(v) =
n · v

(n · v)(1− k) + k

G(l,v,h) = G1(l)G1(v) (4)

Specular F
For Fresnel, we made the typical choice of using Schlick’s approximation [19], but with a minor mod-
ification: we use a Spherical Gaussian approximation [10] to replace the power. It is slightly more
efficient to calculate and the difference is imperceptible. The formula is:

F (v,h) = F0 + (1− F0) 2
(−5.55473(v·h)−6.98316)(v·h) (5)

Where F0 is the specular reflectance at normal incidence.
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Figure 2: Schlick with k = α/2 matches Smith very closely

Image-Based Lighting
To use this shading model with image-based lighting, the radiance integral needs to be solved, which
is often done using importance sampling. The following equation describes this numerical integration:∫

H

Li(l)f(l,v) cos θldl ≈ 1

N

N∑
k=1

Li(lk)f(lk,v) cos θlk
p(lk,v)

(6)

The following HLSL code shows how to do this with our shading model:

float3 ImportanceSampleGGX( float2 Xi, float Roughness, float3 N )
{

float a = Roughness * Roughness;

float Phi = 2 * PI * Xi.x;
float CosTheta = sqrt( (1 - Xi.y) / ( 1 + (a*a - 1) * Xi.y ) );
float SinTheta = sqrt( 1 - CosTheta * CosTheta );

float3 H;
H.x = SinTheta * cos( Phi );
H.y = SinTheta * sin( Phi );
H.z = CosTheta;

float3 UpVector = abs(N.z) < 0.999 ? float3(0,0,1) : float3(1,0,0);
float3 TangentX = normalize( cross( UpVector, N ) );
float3 TangentY = cross( N, TangentX );
// Tangent to world space
return TangentX * H.x + TangentY * H.y + N * H.z;

}

float3 SpecularIBL( float3 SpecularColor, float Roughness, float3 N, float3 V )
{

float3 SpecularLighting = 0;

const uint NumSamples = 1024;
for( uint i = 0; i < NumSamples; i++ )
{

float2 Xi = Hammersley( i, NumSamples );
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float3 H = ImportanceSampleGGX( Xi, Roughness, N );
float3 L = 2 * dot( V, H ) * H - V;

float NoV = saturate( dot( N, V ) );
float NoL = saturate( dot( N, L ) );
float NoH = saturate( dot( N, H ) );
float VoH = saturate( dot( V, H ) );

if( NoL > 0 )
{

float3 SampleColor = EnvMap.SampleLevel( EnvMapSampler, L, 0 ).rgb;

float G = G_Smith( Roughness, NoV, NoL );
float Fc = pow( 1 - VoH, 5 );
float3 F = (1 - Fc) * SpecularColor + Fc;

// Incident light = SampleColor * NoL
// Microfacet specular = D*G*F / (4*NoL*NoV)
// pdf = D * NoH / (4 * VoH)
SpecularLighting += SampleColor * F * G * VoH / (NoH * NoV);

}
}

return SpecularLighting / NumSamples;
}

Even with importance sampling, many samples still need to be taken. The sample count can be
reduced significantly by using mip maps [3], but counts still need to be greater than 16 for sufficient
quality. Because we blend between many environment maps per pixel for local reflections, we can only
practically afford a single sample for each.

Split Sum Approximation
To achieve this, we approximate the above sum by splitting it into two sums (Equation 7). Each
separate sum can then be precalculated. This approximation is exact for a constant Li(l) and fairly
accurate for common environments.

1

N

N∑
k=1

Li(lk)f(lk,v) cos θlk
p(lk,v)

≈

(
1

N

N∑
k=1

Li(lk)
)(

1

N

N∑
k=1

f(lk,v) cos θlk
p(lk,v)

)
(7)

Pre-Filtered Environment Map
We pre-calculate the first sum for different roughness values and store the results in the mip-map
levels of a cubemap. This is the typical approach used by much of the game industry [1, 9]. One
minor difference is that we convolve the environment map with the GGX distribution of our shading
model using importance sampling. Since it’s a microfacet model, the shape of the distribution changes
based on viewing angle to the surface, so we assume that this angle is zero, i.e. n = v = r. This
isotropic assumption is a second source of approximation and it unfortunately means we don’t get
lengthy reflections at grazing angles. Compared with the split sum approximation, this is actually the
larger source of error for our IBL solution. As shown in the code below, we have found weighting by
cos θlk achieves better results1.

1This weighting is not present in Equation 7, which is left in a simpler form
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float3 PrefilterEnvMap( float Roughness, float3 R )
{

float3 N = R;
float3 V = R;

float3 PrefilteredColor = 0;

const uint NumSamples = 1024;
for( uint i = 0; i < NumSamples; i++ )
{

float2 Xi = Hammersley( i, NumSamples );
float3 H = ImportanceSampleGGX( Xi, Roughness, N );
float3 L = 2 * dot( V, H ) * H - V;

float NoL = saturate( dot( N, L ) );
if( NoL > 0 )
{

PrefilteredColor += EnvMap.SampleLevel( EnvMapSampler, L, 0 ).rgb * NoL;
TotalWeight += NoL;

}
}

return PrefilteredColor / TotalWeight;
}

Environment BRDF
The second sum includes everything else. This is the same as integrating the specular BRDF with
a solid-white environment, i.e. Li(lk) = 1. By substituting in Schlick’s Fresnel approximation—
F (v,h) = F0 + (1− F0)(1− v · h)5—we find that F0 can be factored out of the integral:

∫
H

f(l,v) cos θldl = F0

∫
H

f(l,v)
F (v,h)

(
1− (1− v · h)5

)
cos θldl +

∫
H

f(l,v)
F (v,h) (1− v · h)5 cos θldl (8)

This leaves two inputs (Roughness and cos θv) and two outputs (a scale and bias to F0), all of which
are conveniently in the range [0, 1]. We precalculate the result of this function and store it in a 2D
look-up texture2 (LUT).

Figure 3: 2D LUT
2We use an R16G16 format, since we found precision to be important.
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After completing this work, we discovered both existing and concurrent research that lead to
almost identical solutions to ours. Whilst Gotanda used a 3D LUT [8], Drobot optimized this to a 2D
LUT [7], in much the same way that we did. Additionally—as part of this course—Lazarov goes one
step further [11], by presenting a couple of analytical approximations to a similar integral3.

float2 IntegrateBRDF( float Roughness, float NoV )
{

float3 V;
V.x = sqrt( 1.0f - NoV * NoV ); // sin
V.y = 0;
V.z = NoV; // cos

float A = 0;
float B = 0;

const uint NumSamples = 1024;
for( uint i = 0; i < NumSamples; i++ )
{

float2 Xi = Hammersley( i, NumSamples );
float3 H = ImportanceSampleGGX( Xi, Roughness, N );
float3 L = 2 * dot( V, H ) * H - V;

float NoL = saturate( L.z );
float NoH = saturate( H.z );
float VoH = saturate( dot( V, H ) );

if( NoL > 0 )
{

float G = G_Smith( Roughness, NoV, NoL );

float G_Vis = G * VoH / (NoH * NoV);
float Fc = pow( 1 - VoH, 5 );
A += (1 - Fc) * G_Vis;
B += Fc * G_Vis;

}
}

return float2( A, B ) / NumSamples;
}

Finally, to approximate the importance sampled reference, we multiply the two pre-calculated sums:

float3 ApproximateSpecularIBL( float3 SpecularColor, float Roughness, float3 N, float3 V )
{

float NoV = saturate( dot( N, V ) );
float3 R = 2 * dot( V, N ) * N - V;

float3 PrefilteredColor = PrefilterEnvMap( Roughness, R );
float2 EnvBRDF = IntegrateBRDF( Roughness, NoV );

return PrefilteredColor * ( SpecularColor * EnvBRDF.x + EnvBRDF.y );
}

3Their shading model uses different D and G functions.
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Figure 4: Reference at top, split sum approximation in the middle, full approximation including n = v
assumption at the bottom. The radially symmetric assumption introduces the most error but the
combined approximation is still very similar to the reference.

Figure 5: Same comparison as Figure 4 but with a dielectric.
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Material Model
Our material model is a simplification of Disney’s, with an eye towards efficiency for real-time ren-
dering. Limiting the number of parameters is extremely important for optimizing G-Buffer space,
reducing texture storage and access, and minimizing the cost of blending material layers in the pixel
shader.

The following is our base material model:

BaseColor Single color. Easier concept to understand.
Metallic No need to understand dielectric and conductor reflectance, so less room for error.
Roughness Very clear in its meaning, whereas gloss always needs explaining.
Cavity Used for small-scale shadowing.

BaseColor, Metallic, and Roughness are all the same as Disney’s model, but Cavity parameter wasn’t
present, so it deserves explanation. Cavity is used to specify shadowing from geometry smaller than
our run-time shadowing system can handle, often due to the geometry only being present in the normal
map. Examples are the cracks between floor boards or the seams in clothing.

The most notable omission is the Specular parameter. We actually continued to use this up until
the completion of our Infiltrator demo, but ultimately we didn’t like it. First off, we feel “specular” is
a terrible parameter name which caused much confusion and was somewhat harmful to the transition
from artists controlling specular intensity to controlling roughness. Artists and graphics programmers
alike commonly forgot its range and assumed that the default was 1, when its actual default was Bur-
ley’s 0.5 (corresponding to 4% reflectance). The cases where Specular was used effectively were almost
exclusively for the purpose of small scale shadowing. We found variable index of refraction (IOR) to be
fairly unimportant for nonmetals, so we have recently replaced Specular with the easier to understand
Cavity parameter. F0 of nonmetals is now a constant 0.04.

The following are parameters from Disney’s model that we chose not to adopt for our base material
model and instead treat as special cases:

Subsurface Samples shadow maps differently
Anisotropy Requires many IBL samples
Clearcoat Requires double IBL samples
Sheen Not well defined in Burley’s notes

We have not used these special case models in production with the exception of Subsurface which was
used for the ice in our Elemental demo. Additionally we have a shading model specifically for skin. For
the future we are considering adopting a hybrid deferred/forward shading approach to better support
more specialized shading models. Currently with our purely deferred shading approach, different
shading models are handled with a dynamic branch from a shading model id stored in the G-Buffer.

Experiences

There is one situation I have seen a number of times now. I will tell artists beginning the transition
to using varying roughness, “Use Roughness like you used to use SpecularColor” and soon after I hear
with excited surprise: “It works!” But an interesting comment that has followed is: “Roughness feels
inverted.” It turns out that artists want to see the texture they author as brighter texels equals brighter
specular highlights. If the image stores roughness, then bright equates to rougher, which will lead to
less intense highlights.
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A question I have received countless times is: “Is Metallic binary?,” to which I’d originally explain
the subtleties of mixed or layered materials. I have since learned that it’s best to just say “Yes!” The
reason is that artists at the beginning were reluctant to set parameters to absolutes; very commonly I
would find metals with Metallic values of 0.8. Material layers—discussed next—should be the way to
describe 99% of cases where Metallic would not be either 0 or 1.

We had some issues during the transition, in the form of materials that could no longer be repli-
cated. The most important set of these came from Fortnite, a game currently in production at Epic.
Fortnite has a non-photorealistic art direction and purposefully uses complementary colors for diffuse
and specular reflectance, something that is not physically plausible and intentionally cannot be rep-
resented in our new material model. After long discussions, we decided to continue to support the
old DiffuseColor/SpecularColor as an engine switch in order to maintain quality in Fortnite, since it
was far into development. However, we don’t feel that the new model precludes non-photorealistic
rendering as demonstrated by Disney’s use in Wreck-It Ralph, so we intend to use it for all future
projects.

Material Layering
Blending material layers which are sourced from a shared library provides a number of benefits over
our previous approach, which was to specify material parameters individually with the values coming
from textures authored for each specific model:

• Reuses work across a number of assets.

• Reduces complexity for a single asset.

• Unifies and centralizes the materials defining the look of the game, allowing easier art and tech
direction.

To fully embrace this new workflow, we needed to rethink our tools. Unreal Engine has featured
a node graph based material editor since early in UE3’s lifetime. This node graph specifies inputs
(textures, constants), operations, and outputs, which are compiled into shader code.

Although material layering was a primary goal of much of this work, surprisingly very little needed
to be added tool-side to support the authoring and blending of material layers. Sections of node graphs
in UE4’s material editor could already be grouped into functions and used from multiple materials.
This functionality is a natural fit for implementing a material layer. Keeping material layers inside
our node-based editor, instead of as a fixed function system on top, allowed layers to be mapped and
combined in a programmable way.

To streamline the workflow, we added a new data type, material attributes, that holds all of the
materials output data. This new type, like our other types, can be passed in and out of material
functions as single pins, passed along wires, and outputted directly. With these changes, material
layers can be dragged in as inputs, combined, manipulated and output in the same way that textures
were previously. In fact, most material graphs tend to be simpler since the adoption of layers as the
primary things custom to a particular material are how layers are mapped and blended. This is far
simpler than the parameter specific manipulation that used to exist.

Due to having a small set of perceptually linear material parameters, it is actually practical to
blend layers entirely within the shader. We feel this offers a substantial increase in quality over a
purely offline composited system. The apparent resolution of texture data can be extremely high due
to being able to map data at different frequencies: per vertex or low frequency texture data can be
unique, layer blend masks, normal maps and cavity maps are specified per mesh, and material layers
are tiled across the surface of the mesh. More advanced cases may use even more frequencies. Although
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Figure 6: Simple material layering in the UE4 material editor

we are practically limited in the number of layers we can use due to shader cost, our artists have not
yet found the limitation problematic.

An area that is cause for concern is that the artists in cases have worked around the in-shader
layering limitations by splitting a mesh into multiple sections, resulting in more draw calls. Although
we expect better draw call counts in UE4 due to CPU side code optimizations, this seems like it may
be a source of problems in the future. An area we haven’t investigated yet is the use of dynamic
branching to reduce the shader cost in areas where a layer has 100% coverage.

So far, our experience with material layers has been extremely positive. We have seen both pro-
ductivity gains and large improvements in quality. We wish to improve the artist interface to the
library of material layers by making it easier to find and preview layers. We also intend to investigate
an offline compositing/baking system in addition to our current run-time system, to support a larger
number of layers and offer better scalability.

Figure 7: Many material layers swapped and blended with rust.
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Figure 8: Material layering results exploiting multiple frequencies of detail.

Lighting Model
As with shading, we wished to improve our lighting model by making it more physically based. The two
areas we concentrated on were light falloff and non-punctual sources of emission—commonly known as
area lights.

Improving light falloff was relatively straightforward: we adopted a physically accurate inverse-
square falloff and switched to the photometric brightness unit of lumens. That said, one minor com-
plication we had to deal with is that this kind of falloff function has no distance at which it reaches
zero. But for efficiency—both in real-time and offline calculations—we still needed to artificially limit
the influence of lights. There are many ways to achieve this [4], but we chose to window the inverse-
square function in such a way that the majority of the light’s influence remains relatively unaffected,
whilst still providing a soft transition to zero. This has the nice property whereby modifying a light’s
radius doesn’t change its effective brightness, which can be important when lighting has been locked
artistically, but a light’s extent still needs to be adjusted for performance reasons.

falloff = saturate(1− (distance/lightRadius)4)2

distance2 + 1
(9)

The 1 in the denominator is there to prevent the function exploding at distances close to the light
source. It can be exposed as an artist-controllable parameter for cases where physical correctness isn’t
desired.

The quality difference this simple change made, particularly in scenes with many local light sources,
means that it is likely the largest bang for buck takeaway.
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Figure 9: Inverse square falloff achieves more natural results

Area Lights
Area light sources don’t just generate more realistic images; they are also fairly important when
using physically based materials. We found that without them, artists tended to intuitively avoid
painting very low roughness values, since this resulted in infinitesimal specular highlights, which looked
unnatural. Essentially, they were trying to reproduce the effect of area lighting from punctual sources 4.

Unfortunately, this reaction leads to a coupling between shading and lighting, breaking one of the
core principles of physically based rendering: that materials shouldn’t need to be modified when used
in a different lighting environment from where they were created.

Area lights are an active area of research. In offline rendering, the common solution is to light
from many points on the surface of the light source—either using uniform sampling or importance
sampling [12] [20]. This is completely impractical for real-time rendering. Before discussing possible
solutions, here were our requirements:

• Consistent material appearance

– The amount of energy evaluated with the Diffuse BRDF and the Specular BRDF cannot be
significantly different.

• Approaches point light model as the solid angle approaches zero

– We don’t want to lose any aspect of our shading model to achieve this.

• Fast enough to use everywhere

– Otherwise, we cannot solve the aforementioned “biased roughness” issue.

4This tallies with observations from other developers [7,8].
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Billboard Reflections
Billboard reflections [13] are a form of IBL that can be used for discrete light sources. A 2D image,
which stores emitted light, is mapped to a rectangle in 3d space. Similar to environment map pre-
filtering, the image is pre-filtered for different-sized specular distribution cones. Calculating specular
shading from this image can be thought of as a form of cone tracing, where a cone approximates the
specular NDF. The ray at the center of the cone is intersected with the plane of the billboard. The
point of intersection in image space is then used as the texture coordinates, and the radius of the cone
at the intersection is used to derive an appropriate pre-filtered mip level. Sadly, while images can
express very complex area light sources in a straightforward manner, billboard reflections fail to fulfill
our second requirement for multiple reasons:

• The image is pre-filtered on a plane, so there is a limited solid angle that can be represented in
image space.

• There is no data when the ray doesn’t intersect the plane.

• The light vector, l, is unknown or assumed to be the reflection vector.

Cone Intersection
Cone tracing does not require pre-filtering; it can be done analytically. A version we experimented
with traced a cone against a sphere using Oat’s cone-cone intersection equation [15], but it was far
too expensive to be practical. An alternative method presented recently by Drobot [7] intersected the
cone with a disk facing the shading point. A polynomial approximating the NDF is then piece-wise
integrated over the intersecting area.

With Drobot’s recent advancements, this seems to be an interesting area for research, but in its
current form, it doesn’t fulfill our requirements. Due to using a cone, the specular distribution must
be radially symmetric. This rules out stretched highlights, a very important feature of the microfacet
specular model. Additionally, like billboard reflections, there isn’t a defined light vector required by
the shading model.

Specular D Modification
An approach we presented last year [14] is to modify the specular distribution based on the solid angle
of the light source. The theory behind this is to consider the light source’s distribution to be the same
as D(h) for a corresponding cone angle. Convolving one distribution by the other can be approximated
by adding the angles of both cones to derive a new cone. To achieve this, convert α from Equation 3
into an effective cone angle, add the angle of the light source, and convert back. This α′ is now used
in place of α. We use the following approximation to do this:

α′ = saturate
(
α+

sourceRadius

2 ∗ distance

)
(10)

Although efficient, this technique unfortunately doesn’t fulfill our first requirement, as very glossy
materials appear rough when lit with large area lights. This may sound obvious, but the technique
works a great deal better when the specular NDF is compact—Blinn-Phong, for instance—thereby
better matching the light source’s distribution. For our chosen shading model (based on GGX), it isn’t
viable.
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Figure 10: Reference on the left, specular D modification method on the right. The approximation
is poor due to the spherical shape getting lost on grazing angles and glossy materials, such as the
polished brass head, look rough.

Representative Point
If for a specific shading point we could treat all light coming from the area light as coming from a
single representative point on the surface of the light source, our shading model could be used directly.
A reasonable choice is the point with the largest contribution. For a Phong distribution, this is the
point on the light source with the smallest angle to the reflection ray.

This technique has been published before [16] [22], but energy conservation was never addressed.
By moving the origin of emitted light, we effectively increased the light’s solid angle but haven’t
compensated for the additional energy. Correcting for it is slightly more complex than dividing by
the solid angle, since the energy difference is dependent on the specular distribution. For instance,
changing the incoming light direction for a rough material will result in very little change in energy,
but for a glossy material the change in energy can be massive.

Sphere Lights
Irradiance for a sphere light is equivalent to a point light if the sphere is above the horizon [18]. Al-
though counter-intuitive, this means we only need to address specular lighting if we accept inaccuracies
when the sphere dips below the horizon. We approximate finding the point with the smallest angle
to the reflection ray by finding the point with the smallest distance to the ray. For a sphere this is
straightforward:

centerToRay = (L · r) r − L

closestPoint = L + centerToRay ∗ saturate
(

sourceRadius

|centerToRay|

)
l = ∥closestPoint∥

(11)

Here, L is a vector from the shading point to the center of the light and sourceRadius is the radius
of the light sphere and r is the reflection vector. In the case where the ray intersects the sphere, the
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point calculated will be the closest point on the ray to the center of the sphere. Once normalized, it is
identical.

By moving the origin of emitted light to the sphere’s surface, we have effectively widened the
specular distribution by the sphere’s subtended angle. Although it isn’t a microfacet distribution, this
can be explained best using a normalized Phong distribution:

Ipoint =
p+ 2

2π
cosp ϕr (12)

Isphere =

{ p+2
2π if ϕr < ϕs
p+2
2π cosp (ϕr − ϕs) if ϕr ≥ ϕs

(13)

Here ϕr is the angle between r and L and ϕs is half the sphere’s subtended angle. Ipoint is normalized,
meaning the result of integrating it over the hemisphere is 1. Isphere is clearly no longer normalized
and depending on the power p, the integral can be far larger.

Figure 11: Visualization of the widening effect explained with Equation 13

To approximate this increase in energy, we apply the same reasoning used by the specular D
modification described earlier, where we widened the distribution based on the solid angle of the light.
We use the normalization factor for that wider distribution and replace the original normalization
factor. For GGX the normalization factor is 1

πα2 . To derive an approximate normalization for the
representative point operation we divide the new widened normalization factor by the original:

SphereNormalization =
( α

α′

)2
(14)

The results of the representative point method meet all of our requirements. By correctly addressing
energy conservation, materials behave the same regardless of light source size. Glossy materials still
produce sharp-edged specular highlights, and since it only modifies the inputs to the BRDF, our
shading model is unaffected. Lastly, it is efficient enough to use wherever our artists like.

Tube Lights
Where sphere lights are useful to represent light bulbs, tube lights (capsules) can be useful to represent
florescent lights which are quite common in the real world. To start, we solve for tube lights with a
length but zero radius, also known as linear lights. Irradiance for a line segment can be integrated
analytically so long as the segment is above the horizon [16,17]:∫ L1

L0

n · L
|L|3 dL =

n·L0
|L0| +

n·L1
|L1|

|L0||L1|+ (L0 · L1)
(15)

Where L0 and L1 are vectors from the shading point to the end points of the segment.
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Figure 12: Reference on the left, representative point method on the right. Although the energy
conservation isn’t perfect, our approximation convincingly matches the reference.

We modify this equation to prevent negative irradiance, divide-by-zero, and to match our point
light falloff when the length is zero:

irradiance =
2 ∗ saturate

(
n·L0
2|L0| +

n·L1
2|L1|

)
|L0||L1|+ (L0 · L1) + 2

(16)

For linear light specular we need to solve for t in the following set of equations:

Ld = L1 − L0

l = ∥L0 + saturate(t)Ld∥
(17)

Picott [16] found t for the smallest angle to r:

t =
(L0 · Ld)(r · L0)− (L0 · L0)(r · Ld)

(L0 · Ld)(r · Ld)− (Ld · Ld)(r · L0)
(18)

Like the sphere case, we approximate smallest angle and solve instead for the shortest distance:

t =
(r · L0)(r · Ld)− (L0 · Ld)

|Ld|2 − (r · Ld)2
(19)

There are edge cases that aren’t properly handled such that this won’t always find the closest point
but it is a little cheaper to calculate and seems to produce just as reasonable of results as Equation 18.

It is important to note, that since both Equation 18 and 19 treat r as a line instead of ray, neither
solution properly handles rays pointing away from the line segment. This can cause an abrupt change
from one end point to the other even for perfectly flat surfaces. This happens when the reflection rays
transition from pointing towards the light to pointing away. We could address this by choosing between
the calculated point and each end point but this is expensive. At the moment we simply accept the
artifact.

To conserve energy we apply the same concept used for sphere lights. The specular distribution
has been widened by the light’s subtended angle but this time only in one dimension so we use
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the anisotropic version of GGX [2]. The normalization factor for anisotropic GGX is 1
παxαy

where
αx = αy = α in the isotropic case. This gives us:

LineNormalization =
α

α′ (20)

Because we are only changing the light’s origin and applying an energy conservation term, these
operations can be accumulated. Doing so with a line segment and a sphere, approximates a convolution
of the shapes and models fairly well the behavior of a tube light. Tube light results are shown in Figure
13

Figure 13: Tube light using the representative point method with energy conservation

We have found the representative point method with energy conservation to be effective for simple
shapes and would like to apply it in the future to other shapes beyond spheres and tubes. In particular,
we would like to apply it to textured quads to express more complex and multi-colored light sources.

Conclusion
Our move to more physically based implementations, in the areas of shading, materials and lighting,
has proved to be very successful. It contributed greatly to the visuals of our latest Infiltrator demo and
we plan to use these improvements for all future projects. In fact, in cases where it is practical these
changes have been integrated into Fortnite, a project well into development before this work began.
We intend to continue to improve in these areas with the goals of greater flexibility and scalability with
the goal that all variety of scenes and all levels of hardware can take advantage of physically based
approaches.
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Changelog
• 5 Aug 2013: Corrected the calculation of centerToRay in Equation 11—it was inverted. (Credit:

Sébastien Hillaire.)

• 5 Aug 2013: Changed the constant in the denominator of Equation 10 (from 3 to 2) to better fit
the ground truth.
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